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C yclooxygenase (COX) enzymes play
an important role in many complex
physiological and pathophysio-

logical responses, and COX inhibition is as-
sociated with beneficial pharmacological ef-
fects including the relief of inflammation,
pain, and fever (1, 2). COX inhibitors com-
prise a variety of structural classes includ-
ing arylacetic acids, arylpropionic acids,
diarylheterocycles, anthranilates, and sali-
cylates (3). These nonsteroidal antiinflam-
matory drugs (NSAIDs) are low molecular
weight compounds (MW 200–350) with
relatively simple functional groups. Con-
sequently, they associate with many pro-
teins in addition to COXs and exhibit a con-
tinuum of binding affinities. This can lead to
a range of “off-target” effects that can be
beneficial or deleterious. Evaluating the im-
portance of COX inhibition in a given phar-
macological response is extremely impor-
tant for dissecting the components of
complex signaling networks and for defin-
ing new strategies for treating diseases. In
addition, definition of the role of COX-
independent effects within a structural
class of NSAIDs represents a strategy for
new-drug development that builds on exist-
ing compounds with long histories of
human use.

Indomethacin and sulindac sulfide are
powerful, slow, tight-binding inhibitors of
COX-1 and COX-2 (4, 5). Sulindac sulfide is
the active metabolite of the pro-drug sulin-
dac (Figure 1) (6). COX inhibition is a major
factor in the antiinflammatory, analgesic,
and antipyretic activities of both drugs (2).
However, indomethacin and sulindac sul-
fide exert actions such as activation of per-
oxisome proliferator-activated receptor �

(PPAR�), inhibition of �-secretase, induc-
tion of apoptosis, and induction of the tu-
mor suppressor NAG-1, that may be unre-
lated to their ability to inhibit COX (7–11).

Our laboratory has had a long-standing
interest in defining the molecular determi-
nants of COX inhibition by different classes
of NSAIDs (12). We recently described a criti-
cal interaction between indomethacin and
COX enzymes that is a major determinant of
its time-dependent inhibitory activity (13).
The 2-methyl group of the indole ring inserts
into a hydrophobic depression in the side
of the COX active site, strengthening its as-
sociation with the protein (Figure 1). Site-
directed mutagenesis of residues bordering
this hydrophobic depression alters the ki-
netics of indomethacin binding and modu-
lates its inhibitory potency. Removal of the
methyl group generates 1, which exhibits
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ABSTRACT Cyclooxygenases (COX) have been
implicated in the etiology of a number of dis-
eases, but defining the precise contribution of
COXs to these diseases is challenging. Potent
COX inhibitors exist, but they display off-target ef-
fects. 2=-Desmethyl derivatives of indomethacin
and sulindac sulfide were synthesized that dem-
onstrated reduced COX inhibitory activity but
were inducers of peroxisome proliferator-
activated receptor �-dependent transcription,
adipocyte differentiation, or apoptosis of colon
cancer cell lines. 2=-Desmethylindomethacin
demonstrated gastrointestinal toxicity lower than
that of indomethacin in C57BL6 mice, highlight-
ing the importance of COX activity in maintaining
gastrointestinal homeostasis and establishing
that COX inhibition contributes to gastrointesti-
nal toxicity by nonsteroidal antiinflammatory
drugs. These compounds serve as useful probes
of COX-dependent biology and may represent
leads for antidiabetic and anticancer drugs.
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drastically reduced inhibitory potency
against both COX enzymes (13). Since sulin-
dac sulfide is an indomethacin analogue
that contains a methyl group at the
2-position of the indene ring, we hypoth-
esized that 1 and 2 would represent useful
tools for defining the role of COX inhibition
in complex biological responses.

Indomethacin and 1 were compared for
their ability to activate the nuclear transcrip-
tion factor PPAR� in the human colon can-
cer cell line HCA-7, which basally expresses
this nuclear receptor (14, 15) Cells were
transfected with an expression vector con-
taining luciferase under the control of a
PPRE. Addition of either compound trig-
gered a concentration-dependent increase
in luciferase activity (Figure 2, panel a). The
concentration dependence of both com-
pounds was comparable, although the mag-
nitude of the response was slightly greater
for indomethacin. Each compound induced
the expression of a PPAR�-dependent gene,
liver fatty acid binding protein (L-FABP) (16)
(data not shown). Indomethacin and 1 also
were compared for their toxicity to the hu-
man colon cancer cell line RKO. Viable cells
were quantified by incubation with the dye
WST-1, which is reduced by mitochondrial
electron transport to a formazan that is
quantified by absorbance at 405 nm (17).
Figure 2, panel b demonstrates that both
compounds exhibited similar concentration
dependence for induction of cell death.
These experiments indicate that the
2-methyl group of the indole ring of indo-
methacin, which is essential for COX inhibi-

tion, is not required for activation of PPAR�

or for induction of tumor cell apoptosis.
Compound 2 was synthesized by a route

that mimicked the synthesis of sulindac sul-
fide (Supplementary Scheme 1) (18).
p-Fluorophenylpropionic acid was cyclized
to the indanone then alkylated via a Refor-
matsky reaction. The tertiary alcohol was de-
hydrated, and the indene product was con-
densed with p-thiomethoxybenzaldehyde.
The stereochemistry of the benzylidine
double bond was established to be (E) by
nuclear Overhauser effect spectroscopy.
This contrasts with the (Z) stereochemistry
of sulindac sulfide, indicating a key role for
the 2-methyl group in controlling the stereo-
chemistry of the elimination of water in the
condensation reaction. As anticipated, 2 did
not inhibit COX-1 or COX-2 at concentra-
tions up to 250 �M.

Sulindac sulfide and 2 reduced the viabil-
ity of RKO cells with similar dose–response
curves (Supplementary Figure 1, panel a).
The toxic response was greater at 48 h than
at 24 h for both agents. This result not only
indicates that 2 exhibits similar activity to
sulindac sulfide but also establishes that
the cytotoxic effect of sulindac sulfide to-
ward colorectal carcinoma cells is unrelated
to its ability to inhibit COX enzymes. The ob-
served toxicity was due to apoptosis as
judged by nuclear condensation, the induc-
tion of caspase-3 activity, and the cleavage
of caspase-3 targets such as poly(ADP-
ribose)polymerase (Supplementary
Figure 1).

The effects of 2 also were assessed on
PPAR� activation. Transfection of HCA-7

cells with a PPRE-luciferase construct fol-
lowed by treatment with 2 led to robust in-
duction of luciferase activity (Figure 3,
panel a). The induction of luciferase re-
flected binding of 2 to PPAR� as demon-
strated by a scintillation proximity assay in
which 2 displaced [3H]-troglitazone, a
known PPAR� ligand (Figure 3, panel b)
(19, 20) Treatment of HCA-7 cells with com-
pound 2 led to the dose-dependent induc-
tion of L-FABP and another PPAR� target
gene, aP2 (21, 22) (Figure 3, panel c). Induc-
tion of L-FABP and aP2 by 2 was suppressed
by GW9662, a PPAR� antagonist (Figure 3,
panel d) (23). We also evaluated the effects
of troglitazone, indomethacin, 1, sulindac
sulfide, and 2 on adipogenesis in 3T3-L1
cells, a murine fibroblast cell line. As shown
in Figure 3, panel e, staining with Oil Red O
revealed formation of lipid droplets in cells
treated with indomethacin, 1, sulindac sul-
fide, and 2 in a manner similar to that of the
known PPAR� activator troglitazone (24).
Thus, 1 and 2 bind to PPAR�, activate
transcription dependent on a PPRE, induce
the expression of PPAR� target genes,
and activate a complete program of PPAR�-
dependent cellular differentiation. These
experiments conclusively demonstrate
that the ability of indomethacin and
sulindac sulfide to activate PPAR� is not
dependent on its COX inhibitory activity.
Furthermore, these data establish that
the ability of 1 and 2 (and by inference, in-
domethacin and sulindac sulfide) to
activate PPAR�-dependent transcription
is not indirect but depends entirely on
their ability to bind to this nuclear transcrip-
tion factor.

Sulindac sulfide and 2 were compared
for their effects on leukotriene biosyn-
thesis by resident peritoneal macrophages
stimulated with zymosan (Supplementary
Figure 2). Neither compound inhibited total
metabolite production or 5-hydroxyeico-
satetraenoic acid (5-HETE) synthesis. In fact,
there was some stimulation of total metabo-
lism at high concentrations of sulindac sul-
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Figure 1. Structures of indomethacin, sulindac sulfide, 1, and 2. The right panel shows the struc-
ture of the active site of COX-2 with indomethacin bound. The 2-methyl group on the indole ring
inserts into a hydrophobic depression composed of Val349 (green), Ala527 (yellow), Ser530
(red), and Leu531 (violet).
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fide or 2. However, both compounds ap-
peared to inhibit the transformation of
5-hydroperoxyeicosatetraenoic acid (5-
HPETE) to leukotriene C4 as judged by the
decrease of the latter metabolite and the in-
crease in 5-HETE synthesis. Thus, neither
compound is a 5-lipoxygenase inhibitor but
each exhibits an unprecedented ability to
inhibit leukotriene production from the
5-lipoxygenase product 5-HPETE.

The fact that compounds 1 and 2 induce
apoptosis and activate PPAR�-dependent
transcription demonstrates that removal of
the 2-methyl group on the indole or indene
ring selectively eliminates COX inhibition
from the biochemical properties of indo-
methacin and sulindac sulfide while leav-
ing their collateral biochemical properties
intact. Thus, both molecules should be
broadly applicable probes of the role of
COX inhibition in complex biological re-
sponses. To test this hypothesis, we com-
pared the gastrointestinal toxicity of indo-
methacin and 1 in C57BL6 mice. COX
inhibition is believed to be a component of
this undesired side effect of NSAIDs, but
other possible mechanisms, including in-
jury due to direct physical contact with the
lining of the stomach, have been suggested
(25). Thus, controversy surrounds the role
of COX inhibition in the gastrointestinal tox-
icity of NSAIDs in general and indomethacin
in particular. C57BL6 mice are extremely
sensitive to the toxic actions of indometha-
cin, so they represent a useful strain with
which to test the utility of 1 as a probe for
COX inhibition. Varying doses of indometha-
cin and 1 were administered once daily by
intraperitoneal injection to male C57BL6
mice for 4 d. Intraperitoneal administration
was chosen to eliminate potential physical

toxicity to the stomach and intestines result-
ing from delivery by gavage. Sick or mori-
bund animals were sacrificed, and their gas-
trointestinal tracts were removed for
histological examination. Figure 4 com-
pares stomach sections from an animal
treated with 5 mg/kg indomethacin or com-
pound 1. The gastric mucosa in the indo-
methacin-treated mouse shows superficial
hemorrhagic necrosis, with loss of glandu-
lar epithelium and little associated inflam-
mation. The gastric antrum was more se-
verely affected than the body of the
stomach. In contrast, in the mouse treated
with compound 1, the gastric mucosa is his-
tologically normal, with no ulcers or epithe-
lial necrosis.

The apparent LD50’s paralleled the dra-
matic histological differences displayed in
Figure 4, 3.5 mg/kg for indomethacin and
70 mg/kg for compound 1. To evaluate the
possibility that reduced toxicity was due to
differential metabolism, the plasma levels of
indomethacin and 1 were quantified follow-
ing a single intraperitoneal administration
of 5 and 50 mg/kg, respectively. The plasma
level of indomethacin at 5 mg/kg was 40
�M, whereas the plasma level of 1 at 50
mg/kg was 348 �M. The time courses of dis-
appearance of both molecules were compa-
rable, so it appears that the 20-fold differ-
ence in toxicity between indomethacin and
1 is not due to more rapid metabolic dispo-
sition of the latter. These results demon-
strate that the toxicity of indomethacin is pri-
marily attributable to COX inhibition.

These data indicate that a subtle struc-
tural modification, removal of the 2-methyl
group from the indole or indene ring, selec-
tively eliminates the COX inhibitory activity
of indomethacin and sulindac sulfide while

retaining activity at non-COX targets. This
makes compounds 1 and 2 excellent tools
for differentiating the contribution of COX
enzymes to complex biological responses.
Furthermore, the non-COX pharmacological
effects exhibited by 1 and 2 may be directly
translatable to the clinic. Both compounds
are close structural analogues of com-
pounds that have extensive human clinical
histories, so they should exhibit bioavail-
ability and pharmacokinetics similar to
those of indomethacin and sulindac (26,
27). The subtle chemical modification that
eliminated COX inhibitory activity should im-
bue them with reduced gastrointestinal
and cardiovascular side effects relative to
those of the parent drugs, thereby allowing
higher doses to be administered. This elimi-
nates the major hurdle that has prevented
the use of indomethacin or sulindac as
agents that act at non-COX targets. Poten-
tial indications for the desmethyl analogs in-
clude cancer prevention and therapy, treat-
ment of diabetes, and treatment of
Alzheimer’s disease. Finally, the ability of 2
to bind to and activate PPAR�-dependent
transcription indicates that the (E) geometry
of the benzylidene ring is tolerated and
may represent a structural element that can
be exploited for further optimization of novel
PPAR� activators.

METHODS
COX Inhibition Assay. Cyclooxygenase inhibi-

tion was determined as described previously (13).
Cell Viability Assay. RKO cells (ATCC) were cul-

tured in 96-well plates in a final volume of 100 �L
of culture medium with 10% FBS. Each well con-
tained 2,000–4,000 cells per well and desired
concentrations of chemicals. Cells were incubated
in a humidified atmosphere for 24–48 h. To the
cultures was added 10 �L of WST-1 reagent
(Roche, Indianapolis, IN), and the mixtures were
incubated for an additional 1–3 h. The absorbance
of samples was determined using a microtiter
plate reader at a wavelength of 450 nm against a
background control; the reference wavelength was
690 nm.

Hoechst Staining and Apoptotic Cells Counting.
Following treatment with drugs, cells in 6-well
plates were centrifuged for 5 min at 300g to pel-
let apoptotic cells and then prefixed with 2 drops
of glacial acetic acid and methanol (1:3, v/v) for
2 min. After the mixture was aspirated, cells were
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Figure 2. Compound 1 activates PPRE-dependent transcription and induces apoptosis. a)
HCA7 cells were transfected with 1.8 �g of PPRE luciferase and 0.2 �g of pSV�gal. Cells
were treated with 1 (solid bars) or indomethacin (open bars) for 12 h, and relative lucif-
erase/�gal induction was quantified. Columns, means; bars, SD; n � 6; �, p < 0.001. The
maximum fold induction observed by the PPAR� antagonist troglitazone was 3-fold in the
same set of experiments. b) Dose–response for toxicity of indomethacin (solid squares) and
1 (solid triangles) in RKO cells.
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fixed twice in the acetic acid–methanol solution
for 5 min and stained with Hoechst solution
(0.1 �g/mL in PBS) followed by several washes
with deionized water to remove the excess
Hoechst. Apoptotic cells (heavily stained cells
with rounded and fragmented nuclei) were visual-
ized under a fluorescence microscope. For quanti-
tative determination, 3–5 fields of cells were ran-
domly chosen and counted. The total counted cells
(apoptotic and non-apoptotic) were at �300.

Transient Transfection Assay. The HCA7 human
colon cancer cell line was established from a mod-
erately differentiated adenocarcinoma of the co-
lon (14). The cell line was maintained in DMEM
supplemented with 100 IU/mL penicillin,
100 �g/mL streptomycin, and 10% FBS. Cells
were grown to 40% confluence in 6-well dishes.
For each well, 2 �g of plasmid DNA (1.8 �g of
PPRE-luciferase and 0.2 �g of pSV�gal) was intro-
duced into cells using 6 �g of Lipofectamine 2000
as per the manufacturer’s instructions. After 6 h
of incubation, the medium was replaced with
growth medium for 16 h, followed by serum-free
medium containing the compounds for 12 h. The
activities of luciferase and �-galactosidase were
measured.

SPA. The assay was performed as described
previously (19). The PPAR� ligand binding do-
main was isolated from E. coli as a polyhistidine-
tagged fusion protein. Radiolabeled troglitazone
was synthesized as described previously (20). The
buffer for all assays was 50 mM HEPES (pH 7),
50 mM KCl, 5 mM CHAPS, 0.1 mg/mg BSA. The
protein was biotinylated, and immobilized on

streptavidin-modified SPA beads. Nonradioactive
2 was used to compete for binding to the PPAR� li-
gand binding domain using 3H-troglitazone as the
ligand. The assays were performed in the absence
of dithiothreitol.

Adipogenesis Assay. 3T3-L1 cells (ATCC) were
grown at 37 °C in 5% CO2 in DMEM supplemented
with 10% CBS to 60% confluence. The cells were
then placed in growth medium supplemented with

0.1% 3-isobutyl-1-methylxanthine and 1.0% dexa-
methasone to initiate adipogenesis for 48 h. The
cells were then treated in growth medium contain-
ing 10 �g/mL recombinant human insulin supple-
mented with the test compound for an additional
2 days. The medium was then replaced with fresh
growth medium for an additional 48 h prior to
staining with Oil Red O. Images were taken using
Q-Imaging Retina EX camera and Olympus IX51
bright field microscope (200�).

In Vivo Evaluation. C57BL6 male mice (20 g)
were treated with 100 �L of vehicle (DMSO), indo-
methacin, or 1 by intraperitoneal injections for 4
consecutive days. The dosages of indomethacin
were 1, 2.5, or 5 mg/kg, and the dosages of 1 were
1, 10, 25, 50, or 100 mg/kg. Animals were moni-
tored closely and were sacrificed by CO2 asphyxia-
tion when they appeared moribund. There were 6
mice per group; the experiment was performed in
duplicate. The gastrointestinal tracts were re-
moved from representative animals, fixed in for-
malin, and subjected to histological evaluation. All
procedures were approved by the Vanderbilt
IACUC.

Determination of Plasma Levels. Indomethacin
and 1 in mouse plasma were determined by HPL-
C–UV analysis after sample clean-up via solid-
phase extraction. Plasma samples were stored at
�20 °C, thawed, and aliquoted (100 �L) into
13 mm �; 100 mm test tubes. Each sample was
spiked with 10 nmol of internal standard (1 served
as the internal standard for indomethacin analy-
ses and vice versa) then diluted with 900 �L of
0.5% aqueous acetic acid solution. The dilute
sample was loaded onto a 1 cc OASIS HLB solid-
phase extraction cartridge (Waters Corp., Milford,
MA), which was preconditioned with 1 mL of
methanol followed by 1 mL of 0.5% aqueous ace-
tic acid. The cartridge was washed with 1 mL of
0.5% aqueous acetic acid followed by 1 mL of
0.5% aqueous acetic acid with 40% methanol.
Air was drawn through the cartridge for 1 min. Fi-
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Figure 3. Compound 2 is a PPAR� agonist. a) HCA7 cells were transfected with 1.8 �g of PPRE lu-
ciferase and 0.2 �g of pSV�gal. Cells were treated under serum-free conditions with 0–10 �M
2 for 12 h. Columns, means; bars, SD; n � 6; �, p < 0.001. The maximum fold induction ob-
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tibodies to L-FABP, aP2, and �-actin. d) GW9662, a PPAR� antagonist, suppresses compound
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Figure 4. Comparison of gastrointestinal toxicity of indomethacin and 1. Indomethacin or 1
(5 mg/kg) was injected intraperitoneally in 100 �L of DMSO once daily for 4 d. Animals were
monitored closely for hypothermia or lethargy and were sacrificed if they became moribund.
All animals were sacrificed after 4 days, and their stomachs were removed for histopathological
evaluation. The left frame represents hematoxylin- and eosin-stained slides of a section from an
indomethacin-treated animal, and the right frame is from an animal treated with compound 1.
The section from the latter is identical to a tissue section from a control animal and represents
healthy tissue. The arrow in the left frame points to tissue erosion.
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nally, the cartridge was washed with 1 mL of hex-
anes, dried for 2 min with air, and eluted with
1.6 mL of acetonitrile. The eluent was dried under
N2, reconstituted in 100 �L of acetonitrile plus
100 �L of water, and injected on the Waters 2695
separations module. Peaks were separated iso-
cratically in reverse-phase mode using a Phenome-
nex Synergi Max-RP column (7.5 mm �; 0.2 mm)
held at 40 °C. The mobile phase was 1:1 A:B at a
flow of 0.3 mL/min where A � H2O with 0.1% ace-
tic acid and B � acetonitrile with 0.1% acetic
acid. Chromatograms were collected at a wave-
length of 318 nm. Indomethacin and 1 were quan-
tified against a standard curve. Standard samples
were prepared by spiking blank mouse plasma
(Pel-Freez, Carlsbad, CA) with indomethacin or 1
and then subjecting the samples to the clean-up
procedure described above, alongside samples to
be quantified. Analyte response (analyte peak
area/internal standard peak area) was plotted
against nanomoles/sample to generate a linear
standard curve. For both indomethacin and 1 stan-
dard curves, r2 value was �0.999.

Statistics. Comparisons between groups were
made with Student’s t test. A difference of p �0.05
was considered significant.
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